Food entrainment modifies the c-Fos expression pattern in brain stem nuclei of rats.
نویسندگان
چکیده
When food is restricted to a few hours daily, animals increase their locomotor activity 2-3 h before food access, which has been termed food anticipatory activity. Food entrainment has been linked to the expression of a circadian food-entrained oscillator (FEO) and the anatomic substrate of this oscillator seems to depend on diverse neural systems and peripheral organs. Previously, we have described a differential involvement of hypothalamic nuclei in the food-entrained process. For the food entrainment pathway, the communication between the gastrointestinal system and central nervous system is essential. The visceral synaptic input to the brain stem arrives at the dorsal vagal complex and is transmitted directly from the nucleus of the solitary tract (NST) or via the parabrachial nucleus (PBN) to hypothalamic nuclei and other areas of the forebrain. The present study aims to characterize the response of brain stem structures in food entrainment. The expression of c-Fos immunoreactivity (c-Fos-IR) was used to identify neuronal activation. Present data show an increased c-Fos-IR following meal time in all brain stem nuclei studied. Food-entrained temporal patterns did not persist under fasting conditions, indicating a direct dependence on feeding-elicited signals for this activation. Because NST and PBN exhibited a different and increased response from that expected after a regular meal, we suggest that food entrainment promotes ingestive adaptations that lead to a modified activation in these brain stem nuclei, e.g., stomach distension. Neural information provided by these nuclei to the brain may provide the essential entraining signal for FEO.
منابع مشابه
Deep brain stimulation in a rat model of post-traumatic stress disorder modifies forebrain neuronal activity and serum corticosterone
Objective(s): Post-traumatic stress disorder (PTSD), one of the most devastating kinds of anxiety disorders, is the consequence of a traumatic event followed by intense fear. In rats with contextual fear conditioning (CFC), a model of PTSD caused by CFC (electrical foot shock chamber), deep brain stimulation (DBS) alleviates CFC abnormalities.Materials and Methods: Forty Male Wistar rats (220–2...
متن کاملIntrathecal Amylin and Salmon Calcitonin Affect Formalin Induced c-Fos Expression in the Spinal Cord of Rats
Background: Amylin and Salmon Calcitonin belong to the calcitonin family of peptides and have high affinity binding sites in the rat spinal cord. The aim of this study was to characterize receptors for Amylin and Salmon Calcitonin functionally in the spinal cord of rats. We assessed the expression of c-Fos in response to intraplantar formalin in the lumbar regions of the spinal cord in consciou...
متن کاملc-Fos expression in hypothalamic nuclei of food-entrained rats.
The present study aimed to identify the hypothalamic nuclei involved with food entrainment by using c-Fos-like immunoreactivity (c-Fos-IR) as a marker of functional activation. We studied rats entrained 3 wk to restricted feeding schedules (RF), their ad libitum (AL) controls, and the persistence of c-Fos-IR temporal patterns in entrained-fasted rats. In addition, we included 22-h fasting and 2...
متن کاملDevelopmental expression of tyrosine kinase b in rat vestibular nuclear neurons responding to horizontal and vertical linear accelerations
Brain-derived neurotrophic factor (BDNF) is known to be crucial for the development of peripheral vestibular neurons. However, the maturation profile of the BDNF signal transducing receptor, tyrosine kinase B (TrkB) in functionally activated otolith-related vestibular nuclear neurons of postnatal rats remains unexplored. In the present study, conscious Sprague-Dawley rats (P4 to adult) were sub...
متن کاملDevelopmental expression of tyrosine kinase b in rat vestibular nuclear neurons responding to horizontal and vertical linear accelerations
Brain-derived neurotrophic factor (BDNF) is known to be crucial for the development of peripheral vestibular neurons. However, the maturation profile of the BDNF signal transducing receptor, tyrosine kinase B (TrkB) in functionally activated otolith-related vestibular nuclear neurons of postnatal rats remains unexplored. In the present study, conscious Sprague-Dawley rats (P4 to adult) were sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 288 3 شماره
صفحات -
تاریخ انتشار 2005